cyclic group - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

cyclic group - перевод на русский

MATHEMATICAL GROUP THAT CAN BE GENERATED AS THE SET OF POWERS OF A SINGLE ELEMENT
Infinite cyclic group; Infinite cyclic; Cyclic groups; Indicial calculus; Indicial Calculus; Finite cyclic group; Cyclic symmetry; Cyclic group of order 2; Virtually cyclic group; Monogenous group; Infinite cyclic subgroup; Tensor product and hom of cyclic groups; Virtually cyclic
  • 120px
  • roots of unity]] form a cyclic group under multiplication. Here, ''z'' is a generator, but ''z''<sup>2</sup> is not, because its powers fail to produce the odd powers of&nbsp;''z''.
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 40px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 120px
  • 120px
  • The [[Paley graph]] of order 13, a circulant graph formed as the Cayley graph of '''Z'''/13 with generator set {1,3,4}
  • 120px
  • 120px

cyclic group         

математика

циклическая группа

cyclic group         
циклическая группа
cyclic symmetry         

математика

циклическая симметрия

Определение

Крайслер

Википедия

Cyclic group

In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order n is isomorphic to the additive group of Z/nZ, the integers modulo n. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group is a direct product of cyclic groups.

Every cyclic group of prime order is a simple group, which cannot be broken down into smaller groups. In the classification of finite simple groups, one of the three infinite classes consists of the cyclic groups of prime order. The cyclic groups of prime order are thus among the building blocks from which all groups can be built.

Как переводится cyclic group на Русский язык